Problem 1.

Demonstrate (check for the properties) that the following function is an inner product in \mathbf{R}^3 . (Call \mathbf{R}^3 with this inner product Moorean 3-space for the all of these problems following) Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$. Then:

$$\langle u, v \rangle = uAv^T$$
, where A is the matrix $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Solution:

First we need to review the definition of the inner product:

An inner product is a generalization of the dot product. In a vector space, it is a way to multiply vectors together, with the result of this multiplication being a scalar. More precisely, for a real vector space, an inner product $\langle \cdot, \cdot \rangle$ satisfies the following four properties. Let u, v, and w be vectors and α be a scalar, then:

1.
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$
.
2. $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$.
3. $\langle v, w \rangle = \langle w, v \rangle$.
4. $\langle v, v \rangle \ge 0$ and equal if and only if $v = 0$.

Let's simply check these properties for our given function. If we prove that it satisfies the four properties listed above, we'll thus show that it is an inner product indeed.

1.
$$\langle u + v, w \rangle = (u + v) Aw^{T} = uAw^{T} + vAw^{T} = \langle u, w \rangle + \langle v, w \rangle$$

2. $\langle \alpha v, w \rangle = (\alpha v) Aw^{T} = \alpha vAw^{T} = \alpha (vAw^{T}) = \alpha \langle v, w \rangle$
3. $\langle v, w \rangle = vAw^{T} =$
 $= (v_{1}, v_{2}, v_{3}) \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \end{pmatrix} = (2v_{1}, v_{2}, 2v_{3}) \cdot \begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \end{pmatrix} = 2v_{1}w_{1} + v_{2}w_{2} + 2v_{3}w_{3} =$
 $= (2w_{1}, w_{2}, 2w_{3}) \cdot \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = (w_{1}, w_{2}, w_{3}) \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} =$
 $= wAv^{T} = \langle w, v \rangle.$
4. $\langle v, v \rangle = vAv^{T} =$

$$= (v_1, v_2, v_3) \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = (2v_1, v_2, 2v_3) \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 2v_1^2 + v_2^2 + 2v_3^2 > 0,$$

And it equals 0 only if v = (0,0,0).

So, we have checked all the properties and showed that they stand true. So, the function $\langle u, v \rangle = uAv^T$ is an inner product indeed.

Problem 2

Find ||x|| in Moorean 3-space \mathbb{R}^3 (see problem 1) where x = (1, -3, -2).

Solution.

Every inner product space is a normed vector space with the norm being defined by

$$\left\|v\right\| = \sqrt{\left\langle v, v\right\rangle}.$$

In Moorean 3-space \mathbf{R}^3 we get:

$$\langle v, v \rangle = vAv^{T} =$$

= $(v_{1}, v_{2}, v_{3}) \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = (2v_{1}, v_{2}, 2v_{3}) \cdot \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = 2v_{1}^{2} + v_{2}^{2} + 2v_{3}^{2}$

Substituting x = (1, -3, -2) we get

$$\langle x, x \rangle = 2x_1^2 + x_2^2 + 2x_3^2 = 2 \cdot 1 + 9 + 2 \cdot 4 = 19.$$

So, $||x|| = \sqrt{19}$.

Problem 3

Prove that if u and v are given non zero vectors in the arbitrary inner-product space V, and are such that $\langle u, v \rangle = 0$ then $\{u, v\}$ is linearly independent subset of V.

Two vectors u and v are linearly independent if the linear combination $\alpha u + \beta v$ equals 0 only in case $\alpha = \beta = 0$. So we take their linear combination and we try to prove that the coefficients α and β are equal 0. Also, we will apply the properties 1-4 of the inner product, which were listed in the first problem.

It is obvious that $0 = \langle 0, u \rangle$

Then it implies $0 = \langle \alpha u + \beta v, u \rangle = \langle \alpha u, u \rangle + \langle \beta v, u \rangle = \alpha \langle u, u \rangle + \beta \langle v, u \rangle = \alpha \langle u, u \rangle$ (because $\langle u, v \rangle = \langle v, u \rangle = 0$). So $\alpha \langle u, u \rangle = 0$ and we know that due to the property #4: $\langle u, u \rangle > 0$ in case u is a non-zero vector. So the only possibility is that $\alpha = 0$.

The same thing with β :

 $0 = \langle \alpha u + \beta v, v \rangle = \langle \alpha u, v \rangle + \langle \beta v, v \rangle = \alpha \langle u, v \rangle + \beta \langle v, v \rangle = \beta \langle v, v \rangle$. This implies $\beta = 0$.